Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Tomography ; 8(3): 1221-1227, 2022 04 24.
Article in English | MEDLINE | ID: covidwho-1810207

ABSTRACT

PURPOSE: To assess the diagnostic accuracy of traditional chest X-ray (CXR) and digital tomosynthesis (DTS) compared to computed tomography (CT) in detecting pulmonary interstitial changes in patients having recovered from severe COVID-19. MATERIALS AND METHODS: This was a retrospective observational study, and received local ethics committee approval. Patients suspected of having COVID-19 pneumonia upon emergency department admission between 1 March and 31 August 2020, and who underwent CXR followed by DTS and CT, were considered. Inclusion criteria were as follows: (1) patients with previous SARS-CoV-2 infection proven by a positive RT-PCR on nasopharyngeal swabs performed upon admission to the hospital, and with complete clinical recovery; (2) a diagnosis of SARS-CoV-2-related ARDS, according to the Berlin criteria, during hospitalization; (3) no recent history of other lung disease; and (4) complete imaging follow-up by CXR, DTS, and CT for at least 6 months and up to one year. Analysis of DTS images was carried out independently by two radiologists with 16 and 10 years of experience in chest imaging, respectively. The following findings were evaluated: (1) ground-glass opacities (GGOs); (2) air-space consolidations with or without air bronchogram; (3) reticulations; and (4) linear consolidation. Indicators of diagnostic performance of RX and digital tomosynthesis were calculated using CT as a reference. All data were analyzed using R statistical software (version 4.0.2, 2020). RESULTS: Out of 44 patients initially included, 25 patients (17 M/8 F), with a mean age of 64 years (standard deviation (SD): 12), met the criteria and were included. The overall average numbers of findings confirmed by CT were GGOs in 11 patients, lung consolidations in 8 patients, 7 lung interstitial reticulations, and linear consolidation in 20 patients. DTS showed a significantly higher diagnostic accuracy compared to CXR in recognizing interstitial lung abnormalities-especially GGOs (p = 0.0412) and linear consolidations (p = 0.0009). The average dose for chest X-ray was 0.10 mSv (0.07-0.32), for DTS was 1.03 mSv (0.74-2.00), and for CT scan was 3 mSv. CONCLUSIONS: According to our results, DTS possesses a high diagnostic accuracy, compared with CXR, in revealing lung fibrotic changes in patients who have recovered from COVID-19 pneumonia.


Subject(s)
COVID-19 , Pulmonary Fibrosis , COVID-19/diagnostic imaging , Humans , Middle Aged , Radiographic Image Enhancement/methods , Radiography, Thoracic/methods , SARS-CoV-2
2.
Comput Math Methods Med ; 2022: 1043299, 2022.
Article in English | MEDLINE | ID: covidwho-1629752

ABSTRACT

COVID-19 is the worst pandemic that has hit the globe in recent history, causing an increase in deaths. As a result of this pandemic, a number of research interests emerged in several fields such as medicine, health informatics, medical imaging, artificial intelligence and social sciences. Lung infection or pneumonia is the regular complication of COVID-19, and Reverse Transcription Polymerase Chain Reaction (RT-PCR) and computed tomography (CT) have played important roles to diagnose the disease. This research proposes an image enhancement method employing fuzzy expected value to improve the quality of the image for the detection of COVID-19 pneumonia. The principal objective of this research is to detect COVID-19 in patients using CT scan images collected from different sources, which include patients suffering from pneumonia and healthy people. The method is based on fuzzy histogram equalization and is organized with the improvement of the image contrast using fuzzy normalized histogram of the image. The effectiveness of the algorithm has been justified over several experiments on different features of CT images of lung for COVID-19 patients, like Ground-Glass Opacity (GGO), crazy paving, and consolidation. Experimental investigations indicate that among the 254 patients, 81.89% had features on both lungs; 9.5% on the left lung; and 10.24% on the right lung. The predominantly affected lobe was the right lower lobe (79.53%).


Subject(s)
Algorithms , COVID-19/diagnostic imaging , Lung/diagnostic imaging , Radiographic Image Enhancement/methods , SARS-CoV-2 , Computational Biology , Fuzzy Logic , Humans , Pandemics , Retrospective Studies , Tomography, X-Ray Computed/statistics & numerical data
3.
Respir Investig ; 59(6): 871-875, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1364443

ABSTRACT

Spirometry is a crucial test used in the diagnosis and monitoring of patients with chronic obstructive pulmonary disease (COPD). Severe acute respiratory syndrome coronavirus 2 pandemic has posed numerous challenges in performing spirometry. Dynamic-ventilatory digital radiography (DR) provides sequential chest radiography images during respiration with lower doses of radiation than conventional X-ray fluoroscopy and computed tomography. Recent studies revealed that parameters obtained from dynamic DR are promising for evaluating pulmonary function of COPD patients. We report two cases of COPD evaluated by dynamic-ventilatory DR for pulmonary function and treatment efficacy and discuss the potential of dynamic DR for evaluating COPD therapy.


Subject(s)
Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Radiographic Image Enhancement/methods , Radiography, Thoracic/methods , Aged , Asthma/diagnosis , Asthma/drug therapy , Bronchodilator Agents/therapeutic use , Drug Combinations , Fluticasone/therapeutic use , Formoterol Fumarate/therapeutic use , Glycopyrrolate/analogs & derivatives , Glycopyrrolate/therapeutic use , Humans , Indans/therapeutic use , Lung/physiology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/drug therapy , Quinolones/therapeutic use , Spirometry , Tiotropium Bromide/therapeutic use , Treatment Outcome
6.
Biosens Bioelectron ; 165: 112361, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-617487

ABSTRACT

The recent outbreak of the coronavirus disease (COVID-19) has left the world clueless. As the WHO declares this new contagion as a pandemic on the 11th of March 2020, the alarming rate of the spawn of the disease in such a short period has disarranged the globe. Standing against this situation researchers are strenuously searching for the key traits responsible for this pandemic. As knowledge regarding the dynamics and host-path interaction of COVID-19 causing Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is currently unknown, the formulation of strategies concerning antiviral treatment, vaccination, and epidemiological control stands crucial. Before designing adequate therapeutic strategies, it is extremely essential to diagnose the disease at the outset as early detection can have a greater impact on building health system capacity. Hence, a comprehensive review of strategies for COVID-19 diagnosis is essential in this existing global situation. In this review, sequentially, we have provided the clinical details along with genetic and proteomic biomarkers related to COVID-19. The article systematically enlightens a clear overview of the clinically adopted techniques for the detection of COVID-19 including oligonucleotide-based molecular detection, Point-of-Care immunodiagnostics, radiographical analysis/sensing system, and newly developed biosensing prototypes having commercial viability. The commercial kits/analytical methods based-sensing strategies have also been tabulated categorically. The critical insights on the developer, commercial brand name, detection methods, technical operational details, detection time, clinical specimen, status, the limit of detection/detection ability have been discussed comprehensively. We believe that this review may provide scientists, clinicians and healthcare manufacturers valuable information regarding the most recent developments/approaches towards COVID-19 diagnosis.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Lab-On-A-Chip Devices , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Animals , Antibodies, Immobilized/chemistry , Betacoronavirus/genetics , Biomarkers/analysis , Biosensing Techniques/instrumentation , COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/blood , Coronavirus Infections/virology , Equipment Design , Humans , Immunoassay/instrumentation , Immunoassay/methods , Nanostructures/chemistry , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL